Account interference

First we will do a general task that will help us to solve other such tasks.
You must stir the two types of goods, whose prices are $\mathbf{A} \$$ per kg and $\mathbf{B} \$$ per kg, to received the goods at a price of $\mathbf{C} \$$ per $\mathrm{kg},(\mathrm{B}<\mathrm{C}<\mathrm{A})$. Determine the scale of this should interfere two types of goods.
A
B

scheme
picture 1.
picture 2.
picture 3.

If we take xkg of goods at the price of $\mathbf{A} \$, \mathrm{y} \mathrm{kg}$ at the cost of $\mathbf{B} \$$, then:

$$
x: y=(C-B):(A-C)
$$

1) On the stock has coffee at a price of $75 \$$ per kg and $55 \$$ per kg . Create a 120 kg mixture, which will sell at $68 \$$ per kg.

Solution:

$x: y=13: 7$ and $x+y=120$
$\begin{aligned} & x: y=13: 7 \\ & \begin{array}{l}x=13 k \\ y=7 k\end{array} \\ & \begin{array}{l}x+y=120\end{array} \\ & \begin{array}{l}13 k+7 k=120 \\ 20 k=120\end{array} \\ & \begin{array}{l}k=6 \\ x=13 k\end{array} \\ & \begin{array}{l}y=7 k \rightarrow 13 \cdot 6 \rightarrow x=78 \mathrm{~kg} \\ y\end{array} \\ & \end{aligned} \begin{aligned} & x=7 \cdot 6 \rightarrow y=42 \mathrm{~kg}\end{aligned}$

Of course, this task can be solved with system:

$$
\begin{aligned}
& 75 \cdot x+55 \cdot y=68 \cdot(x+y) \\
& x+y=120 \mathrm{~kg} \\
& 75 x+55 y=68 \cdot 120 \\
& x+y=120 \\
& 75 x+55 y=8160 \\
& x+y=120
\end{aligned}
$$

$x=120-y \rightarrow$ Express one unknown and change it to another equation

$$
\begin{gathered}
75(120-y)+55 y=8160 \\
9000-75 y+55 y=8160 \\
-75 y+55 y=8160-9000 \\
-20 y=-840 \\
y=42 \mathrm{~kg}
\end{gathered}
$$

$$
\begin{aligned}
& x=120-42 \\
& x=78 \mathrm{~kg}
\end{aligned}
$$

2) How much water temperature $40^{\circ} \mathrm{C}$ and water temperature $25^{\circ} \mathrm{C}$ should be mixed to obtain 90 liters of water temperature $30^{\circ} \mathrm{C}$?

Solution:

$$
\begin{aligned}
& \text { x liters } 40^{\circ} \mathrm{C} \\
& \text { y liters } 25^{\circ} \mathrm{C}
\end{aligned} \quad \Rightarrow \quad x+y=90 l
$$

$\mathrm{x}=30 l$ and $\mathrm{y}=60 l$
Over systems, would be:
$40 \cdot x+25 y=90 \cdot 30$
$x+y=90$
3) How should be mixed acid strength $\mathbf{5 2 \%}$ and $\mathbf{8 8 \%}$ to get mixture of $\mathbf{1 4 4}$ liters with strenght $\mathbf{7 2 \%}$? Solution:

Watch out when we mix goods with $\mathbf{3}$ or more different prices!
Complex account of interference we do as is in next example.
4) The company has 4 types of flour at the price of $36 \$, 38 \$, 45 \$$ and $49 \$$ per kilogram. How much should be taken of any kind that price is $40 \$$ per kilogram?

Solution:

First to say that we write down the information similar as with two types of goods.
But here we have more options.

The first option

36

Picture 1.
Picture 2.
Picture 3.
Picture 4.

On picture 1. we see how to record data.
Now we mix two by two types of flour, but take care: Both types should be greater or less than 40 (price of mixture, that is $40 \$$ in our example)

On picture 2. we took $36 \$$ and $45 \$$ (one smaller and one larger than 40\$)
On picture 3. we took $38 \$$ and $49 \$$ (one smaller and one larger than 40\$)
On picture 4. we obtain proportion: $\mathbf{x}: \mathbf{y}: \mathbf{z : t = 5 : 9 : 4 : \mathbf { 2 }}$

The second option

36

Picture 1.
Picture 2.

Picture 3.
Picture 4.

```
x:y:z:t=9:5:2:4
```


In general, we would work this:

$$
\begin{aligned}
& 36 x+38 y+45 z+49 t=40(x+y+z+t) \\
& 36 x+38 y+45 z+49 t=40 x+40 y+40 z+40 t \\
& 36 x+38 y+45 z+49 t-40 x-40 y-40 z-40 t=0 \\
& -4 x-2 y+5 z+9 t=0
\end{aligned}
$$

In this way we obtain an equation in which we can take three arbitrary unknown to find a fourth !

In this way we can make as much as we need different proportions.

